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SUMMARY

A three-dimensional six-degree-of-freedom trajectory simulation applicable to

preliminary stability and control studies of vehicles having large multi-engine boosters

is formulated. The simulation employs rigid body equations of motion referenced to a

special set of body axes known as Euler axes, an orthogonal right-handed triad having

its origin at the instantaneous center of gravity of the vehicle. Fuel sloshing and elas-

ticity effects are ignored. Simplifications are kept to a minimum in the derivation of

the basic equations; consequently, the complexity of the simulation can be varied by

assigning zero values to certain parameters. The aerodynamic characteristics of the

vehicle are assumed to be a function of both Mach number and angle of attack. Vehicle

mass and inertia characteristics are assumed to be time variant. Winds of arbitrary

velocity and direction are incorporated into the simulation.

Artificial stabilization is assumed to be provided by thrust vector control and

application of the drift-minimum or load-minimum principle, although other control

modes can be applied. Thrust forces are resolved in a manner which allows arbitrary

location of the engines, except for the restrictions that the engine array must be sym-

metrical with respect to the vehicle center line and gimbal points must lie in a plane

perpendicular to the center line.

The simulation will provide basic systems design information concerning the

dynamic behavior of specific configurations with emphasis being placed primarily on

the boost phase of flight. The basic information desired is the engine gimbal angles

necessary for stabilization and the responsive motion of the vehicle to a specified

disturbance. A numerical example is included which illustrates the application and

flexibility of the simulation. Results are compared where possible with a typical two-
dimensional simulation.



SECTIONI. INTRODUCTION

Conventional body of revolution type vehicles are generally aerodynamically unstable
since the center of pressure of the body alone is near the shoulder of the nose fairing,

while the center of gravity is nearer the base. In the past, many vehicles have been

stabilized by the addition of fins to the body, or by a combination of fins and spinning

the vehicle in flight (Ref. 1). The provision of complete fin stabilization becomes less

attractive with increasing size of the vehicle, for example those employed in manned

space flight missions, because of large weight penalties and because the increasing fin

span interferes with launching equipment. However, in some cases, relatively small

fins may be used advantageously as a means of decreasing instability and reducing the

load imposed on the main control system. Spin stabilization is rarely even considered

for large vehicles, especially those using [iquid propellants because of the resulting

fuel sloshing and centrifugal force problems.

Artificial stabilization by means of a control system, rather than the provision

of a stable airframe, appears to be the best approach for large vehicles (Ref. 2). Such

a control system requires control torques which may be produced by air vanes, jet vanes,

engine gimbaling, and several other means or combinations of these. Control by engine

gimbaling, sometimes referred to as thrust vector control, has been successfully em-

ployed in several large vehicles and appears to be attractive for those of the future.

Consequently, only gimbal control is considered in this report. The limiting of maximum

required control deflections to reasonably small values is important in view of the in-

creasing complexity of gimbal bearings, adequate closure of the vehicle's base for

protection from base heating, and structural requirements for engine mounts and air-

frame (Ref. 2).

Since the success of a mission often depends on proper attitude stabilization of the

vehicle, control requirements and restrictions need to be considered during the prelim-

friary design phase when the basic vehicle configuration is established. Such studies

should be as simplified as the desired degree of accuracy allows. Furthermore the

methods used should be quite flexible to cope with the variety of configurations usually
encountered.

A unique method of artificial stabilization of aerodynamically unstable vehicles

known as the "drift minimum principle" (Ref. 3) has been widely used in preliminary

control investigations and is of considerable current interest (Refs. 4 and 5). Appli-

cation of this scheme renders the vehicle path almost insensitive to wind forces, which

are the primary source of disturbance during the early stages of flight. This principle

utilizes linear control equations in which the so-called control gains are predetermined

in a specified manner for each vehicle. A variation of the principle, in which tempora_¢

path instability is allowed in order to reduce the loads on the vehicle, is referred to as



the "load-minimum principle. " Both the load-minimum and drift-minimum control
modes are discussed more recently in Reference 6, with two other possible control
schemes. A more generalized discussion of the problems of attitude stabilization for
large g_ided missiles can be found in Reference 2.

Preliminary vehicle design applications of the above principles have been almost

entirely restricted to two-dimensional, planar analyses. Consequently, these studies

are limited to independent investigations of pitch, yaw, and roll motions, with roll

motion frequently neglected entirely. Analyses of this type are partially justified for

symmetrical colffig_lrations. For non-symmetrical vehicles, which could be the case

for config_lrations carrying winged payloads for manned Space flight, a three-dimensiolml

almlysis of the dynamic motion is necessary to study the aerodynamic and coupling effects

properly (Ref. 7). In a three-dimensional simulation, pitch, yaw, and roll motions are

examined simultaneously. For multi-engine boosters, three dimensions are often neces-

sary to resolve the thrust forces and moments properly.

In the two-dimensional analyses, flight conditions must be assumed constant in all

planes of motion except the plane being considered. Often the vehicle aerodynamic

characteristics are assumed to be constant (Ref. 2) although the Maeh number and angle

of attack may be changing. Furthermore, wind disturbances in the two-dimensional

analyses are necessarily restricted to constant direction and it is assumed that a direct

side wind results in the maxinmm yaw disturbance. In Reference 8, however, it was

found that in most cases, the maximum 5raw dispersion does not coincide with a direct

side wind. Winds of arbitrary velocity and direction are easily incorporated in a three-

dimensional simulation (Ref. 9).

Restricted three-dimensional equations, with linear thrust vector control, are

formulated in Reference 10, but are not suitable for studies involving multi-engine

vehicles. Previous studies involving multi-engine vehicles have been limited to a

particular engine arrangement (Ref. 4). The literature reviewed indicates that there

is a need for a three-dimensional trajectory simulation, applicable to stability and

control studies, incorporating variable wind, variable aerodynamics, and arbitrary

engine arrangement.

This study formulates a general three-dimensional six-degree-of-freedom trajec-

tory simulation applicable to stability and control studies of vehicles having large multi-

engine boosters. The simulation is formulated in a manner allowing arbitrary location

of the engines with respect to the center line of the vehicle, except for the restrictions

that the engine array must be symmetrical, and gimbal points must lie in a plane per-

pendicular to the center line. The vehicle is assumed to be a rigid body relying on

artificial stabilization by thrust vector control. Elasticity and fuel sloshing effects

are ignored.



The simulation will provide basic systems design information concerning the
dynamic behavior of specific configurations with emphasisprimarily on the boostphase
of flight. The basic information desired is the engine gimbal angles necessary for
stabilization and the responsive motion of the vehicle to a specified disturbance. A
linear control system is assumedand two control modes, namely, the drift-minimum
and load-minimum principles (Ref. 6), are considered.

A ficticious, but realistic, vehicle is postulated as an illustrative exampleand
typical' results are presented. The results are compared, where possible, with typical
two-dimensional results. Indications are that the simulation derived in this study
satisfies the intended purpose and is adequatefor preliminary stability and control
studies of large multi-engine vehicles.

SECTIONII. COORDINATESYSTEMS

A. COORDINATEDESCRIPTION

The choice of coordinate systems and the methods of coordinate resolution
are extremely important in the formulation and solution of any system of equations.
Several coordinate systems used in solving the three-dimensional flight equations have
beeninvestigated in Reference 11. The conclusion is reached that the best axis system
from the standpointof simplicity is one employing wind axes for translational equations
and body axes for rotational equations. Sucha procedure is rarely employed, however,
becauseconfusion is inevitable when different axis systems are used for the two sets of
equations.

Wind axes have long beenused in analytical stability and control studies (Ref. i2)
to take advantageof the resulting simplifications in the equations of motion. However,
since wind axes are not fixed with respect to the body, it is necessary either to assume
that the time rate of changeof the momentsand products of inertia is negligible,
formulate an auxiliary expression for their time dependency;consequently, a special
set of body axesknownas Euler axes is used in this study.

The Euler axis system (Ref. 13) is associatedwith an orthogonal right-handed
triad having its origin at the instantaneouscenter of gravity of the vehicle as shownin
Figure 1.

The X-direction is positive along the longitudinal axis pointing forward. The Y
and Z directions are the pitch and yaw axes, respectively, with the Y-axis positive to
the right looking in the flight direction. With respect to the Euler axis system, the
vehicle has linear and angular velocities and accelerations but no displacements. This
system is especially adaptableto studies of rigid body flight dynamics since the velocities

4
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measured with respect to these axes are the same as the velocities that are measured

by instruments mounted in the vehicle. Another advantage of this system, as opposed

to wind axes, is that the moments and products of inertia are independent of time,

except for changes in the vehicle's mass.

Another set of axes used in establishing the equations of motion is referred to

as earth-fixed axes. A flat, non-rotating earth is assumed for this study so that the

earth-fixed axis system is actually an inertial system which is needed when applying

Newton's Laws. For a flat earth, these axes are at all times parallel to the axes of the

vehicle's stabilized platform.

In the earth-fixed system (Xg, Yg, Zg), the Zg axis is the vertical axis being

positive in the opposite direction of gravity. The Xg axis is defined by the desired

flight azimuth with the Yg axis completing the right-handed orthogonal system.

A third system, often needed in connection with aerodynamic parameters, is

the stability or experimental axis system. This system is commonly used in wind

tunnel facilities and the like for referencing aerodynamic data. However, depending

upon model instrumentation, such data can also be referenced to body axes. For this

study, it is assumed that all aerodynamic parameters are referenced to the body or
Euler axis system.

B. COORDINATE RESOLUTION

Before going into a derivation of the equations of motion, it is desirable to

develop the transformations relating the body and earth-fixed coordinate systems. As

yet, no parameters have been defined for relating the two. For this purpose, the Euler

angles _, :, and : are introduced and will be referred to as the pitch, yaw, and roll

angles, respectively. Euler devised a method of rotating an axis system successively
about its own axes so that at the end of the third rotation the system is parallel to a

second specified axis system. Care must be taken in using Euler angles since they do

not obey the commutative law thereby requiring that a specified sequence of rotation be

maintained throughout a particular analysis.

A standardized Euler sequence has been used in formulating the three-dimensional

flight equations for aircraft and ungxlided vehicles (Refs. 7, 9, and 11). This particular

sequence has the order yaw, pitch, and roll with the pitch angle referenced to the hori-

zontal plane. By a twist of fate, all Euler sequences have a singularity when the second

rotation is exactly +90 ° . The singularity is a zero in the denominator of one of the

equations relating the angular velocity components of the vehicle to the time rate of

change of the Euler angles (Ref. 11). Consequently, the conventional sequence used

for studies involving aircraft and unguided vehicles has a singxtlarity at _' = + 90 ° , and

is obviously unsuitable for vertically launched vehicles. As a result of this situation,

a different Euler sequence is used in the present study. The rotational order for this

study is _, _, and : (pitch, yaw, roll) with _ being referenced to the vertical Zg axis.



It is pointed out in the development of the transformation equations that this system has a

a singularity at _ = +90 ° , a condition that is not likely to occur.

An arbitrary orientation of body and earth-fixed axes is shown in Figure 2 with

the Euler angles indicated. Also shown are the axes about which the time rates of

change of the Euler angles are measured. It should be noted that these axes are not

mutually orthogonal, thus explaining why the Euler sequence is not commutable. In

their original positions, X coincides with Zg and Z coincides with Xg while Y and Yg

are 180 ° out of phase. Any arbitrary orientation of the body and earth-fixed axes is

obtained as follows:

1. Rotate about the Yg-axis through the angle 9 to define the X 1, Y1, Zl system

( Fig. 3).

2. Rotate about X 1 through the angle l; to form the X 2, Y2, Zz system.

3. Rotate about Z 2 through the angle ¢ to establish X3, Y3, Z3. The X3, Y_, and

Z 3 axes correspond to the body axes Z, -Y, and X, respectively.

The angles are positive when, in performing the rotations described, the right-

hand rule is applied.

From Figure 2, keeping in mind that initially Y and Yg are 180" out of phase, it

can be seen that:

X1 = _ cos e - Zg sin e

Yz = Yg

Zz = Zg cos e + Xg sin e

_" (la, b, c)

X 2 = X 1

Y2 = YI cos @ + Zl sin

Z2 = Z1 cos _ - Y1 sin

X3 = Z = ]{2 cos _ + Ya sin

Y3 = -Y = Y2 cos ¢ - X2 sin

Z5 = X = Z2

i
1

(2a, b, c)

(3a, b, c)
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Combining Equations 1, 2, and 3 gives

X = Xg sin 0 cos , - Yg sin _ + Zg cos 0 cos _

Y = Xg (cos 0 sin c> - sin E) sin _ cos _) - Yg cos _ cos ¢

- Zg (cos 0 cos _ sin _ + sin _ sin $) >(4a, b, c)

Z = Xg (cos 8 cos _ + sin 8 sin _ sin ¢) + Yg cos _ sin _

+ Zg (cos @ sin _/ sin _ - sin $ cos _)

Equations 4a, 4b, and 4c represent the geometric resolution of body and earth-fixed

axes. In matrix notation (Ref. 15), the transformation is

y _=_d2z d22 d231 yg (5)

Z _ _d_z d32 d35_ Zg

whe re

dzz = sin 0 cos

d12 = - sin

d15 = cos e cos _/

d21 = cos e sin _$ - sin e sin _ cos

d22 = - cos _ cos

d23 = - (cos _ cos _> sin _ + sin 0 sin ¢)

dsl = cos 0 cos ¢ + sin 0 sin _ sin ¢

d52 = cos _f sin ¢

d55 = cos 0 sin _ sin _ - sin 0 cos ¢

These quantities are actually the direction cosines of angles between the earth-fixed and

body axes expressed in terms of Euler angles. The methods for deriving the direction

cosine relations by means of spherical trigonometry are outlined in Reference 7, but the

approach used above presents fewer difficulties. Reference 7 also gives the orthogonality

relations

I0



dii 2 + d122 + diz 2 = i

d212 + d222 + da:3_ = i - (6a, b, c)

d3i 2 + d32 :_+ dz.3_ = I

These relations provide the means for a partial check of solutions of the equations of

motion since the values determined for the Euler angles must satisfy the equations.

The matrix operation given in Equation 5 can be inverted to transform quantities

from body to earth-fixed axes. Thus,

Xg

Zg

dli d21 d3i
!

= Id!2 d22 d32
I

diz d2z d33

X)Y

z

(7)

]ne geometric transformation can only be used when transforming translational

quantities such as distance, velocity, and acceleration. In the development of the

equations of motion, the time rate of change of the Euler angles will be of interest.

Another look at Figures i and 2 shows that the actual axes about which the rotations take

place are Z2, Yg, and X1. The rotational resolution of this triad and the body axes is

a necessity. The angular velocities about the X, Y, and Z axes are denoted by p, q, and

r, respectively, and represent three rotational degrees-of-freedom of a rigid body. The

relative orientation of the angular velocity vectors in the two systems is illustrated in

Figure 2. From the figure, it is evident that

p = ,$ 0 s in k)

q = _ sin ¢ - e cos _ cos ,_

r = _/ cos ,$ + e cos _/ sin ,>

(8a, b, c)

These equations represent the rotational resolution of the triad X, Yg, Z 1 to the

body fixed axes. In matrix notation,

q = 0 - cos _ cos ,:_ sin

r 0 cos _ sin i$ cos $

1 (9)

Inverting thismatrLx gives

iI



or

1
- (r sin <_ - q cos _))

cos

= r cos _ + q sin _i_

,_ = p + (r sin _> - q cos _) tan

(lOa, b, c)

,,,
i

- cos ,b tan

COS <_

COS

sin

sin tan )(psin

cos _/ q

cos ,_ r

(11)

-- l

Equation i0a has a singularity point at _ = +90 °. This substantiates the earlier

discussion pointing out that every Euler sequence has a singularity when the second

rotation is exactly +90 ° . No further transformations are necessary for this study.

SECTION HI. EQUATIONS OF MOTION

A. BASIC EQUATIONS

The approach used in establishing the equations of motion is first to formulate

the general case under certain restrictions, and consider simplifications later. For

this study, the vehicle is considered a rigid body in space. Gravity is assumed to be
constant in both magnitude and direction. The earth's rotation and orbital motion are

neglected, making the earth-fixed axes an "inertial system•

The assumption that the earth is fixed in an inertial reference frame ignores the

existence of the Coriolis and centripetal accelerations due to angular velocity of the

earth. Actually these two components of acceleration usually comprise only a small

portion of the total acceleration experienced by the vehicle. Since the inertial frame

is attached to the earth, additional errors result as flight progresses over the surface

of the earth. Since the assumed gravitational field is in error by the inclination of the
gravity force vector, neglecting the curvature of the earth's surface will introduce an

altitude error. If the flight time is not excessive, and flight occurs over a small part

of the earth's surface, all these errors may be neglected. These conditions are not

met by either ballistic or complete orbital trajectories. For preliminary dynamic

stability and control investigations of the boost phase of large vehicles, the area of

interest is normally limited to atmospheric flight and the assumptions above appear
justified.

12



The quantities u, v, andw are actually the speedsof the center of gravity. The
shift of the center of gravity during flight, with respect to some fixed vehicle reference,
will be accountedfor in the equationsof motion; however, the time rate of changeof
the center of gravity (the velocity of the center of gravity with respect to the vehicle)
is small and canbe neglected.

Newton's laws state that the sum of the external forces and momentsacting on
a rigid body canbe equatedto the time rate of changeof linear and angular momentum,
respectively. Accordingly, the force and moment equations are:

dt - i F X + Fy + k ) F Z (12)

d -7" _ (13)
_= _ L+j - M+k N
dt •

where L T and H T are the linear and angular momentum, respectively, F X, Fy, F Z,
and L, M, N are the force and moment components along and about the X, Y, and Z

axes, respectively.

The subscript T in the equation above refers to the total system and indicates

the inclusion of gases in the nozzle generated by burning of propellant. To take into

account the dynamic effect of the jet on the vehicle, the rate of change of linear momen-
tum must include the rate of linear momentum leaving the nozzle exit in the jet. Likewise,

the rate of change of angular momentum must include the rate of change due to gases

leaving the nozzle.

The rigid body equations of motion for flight mechanics applications under all the

assumptions made earlier, but with the additional restriction of constant mass, are
derived in References 10 and 13. Vehicle mass is variable during the boost phase of

any vehicle. The effect of mass loss has been considered by many investigators in

analyses concerning such problems as the performance of high altitude sounding rockets

and escape from the earth by a rocket (Refs. 14 and 15). In these analyses, however,

dynamic stability was not included in the area of investigation.

It has been determined, however, that the variation in mass causes so-called jet

damping forces and moments. A restricted two-dimensional analysis has been made in

Reference i5 to determine the effect of mass variation on the dynamic stability of rocket-

propelled vehicles. The vehicle involved in that study was a small, low-thrust, single-

engine rocket. The results show that a disturbance of the variable mass vehicle damps

out more rapidly than it does with the mass assumed constant, indicating that the variable

mass vehicle is more stable. The effect of jet-damping is dependent on the ratio of the

13



time rate of changeof mass to the gross mass of the vehicle. Since large multi-engine
vehicles are generally aerodynamically unstable, any stabilizing effect should certainly
be considered as a means of alleviating the control problem; therefore, mass was
assumedvariable in this study.

The basic three-dimensional six-degree-of-freedom equationsare derived in
Reference 16 for a single-engine missile. It is shownthat Equations 12and 13can be
expandedinto the form

d_T d_
- + x r ) (14)dt dt + _ (V - Ve e

and

dr%
--_ = _-_ + _n rL x (% + _ x re) (15)

where V e is the velocity of the exhaust gases relative to the vehicle, V is the trans-

lational velocity of the vehicle, ;; is the rotational velocity of the vehicle, and r-e is

the vector distance from the instantaneous center of gravity to the center of the nozzle
exit. The mass flow rate, m, is defined as

dm

dt (16)

Furthermore, L and H are the linear and angular momentum neglecting the exhaust

gases.

Following the methods of Reference 17, remembering that L and H are referred

to the body axes system which is rotating with an angular velocity _ with respect to

the earth-fixed or inertial system, the scalar components of Equations 14 and 15 for the
case of a multi-engine vehicle can be shown to be

n

_Fx = m(6 + wq- vr)+_]lh n (q rez - r r ) (17)
1 n eYn

n

_Fy = m(_ + ur- wp)+_mn (r rex - p rez ) (18)

l n n

14



f F z = m(Q + vp

n

up) +_rn n (p r
l eYn

- qr )
ex

n

_ - Iy) + (pr - _) Ixy (pq + 5) IXZL = _ IX + qr (IZ

_ (re _ qe) iy Z _ pl X + qlxy + rlxz

n

+_mn p(r e + r e) + r (q r + r r )
evn ez ez ezn n eYn n

1

M = qly + pr(l X - IZ) + (Pq - r)Iyz - (P + qr) Ixy

n

+ (pe _ r 2) IX Z _ qly + rlyz + Plxz +___,_n n
1

[q(rez e + rex e) + r v (r rez + P rexn)J
n n e-n n

(19)

(20)

(21)

N = rl Z + pq(Iy - IX ) + (qr - p) IXZ + (pr + q) Iyz

n

+ (qe + pe) IX Y _ ri Z + Plxz + qlyz + mn
1

Ir(rex 2 + r 2 )+rn _ (p r + q reYn) jevn ez exn n

(22)

where the subscript n refers to a particular engine.

These equations represent the motion along and about the X, Y, and Z axes. The

equations are complete, within the assumptions made to date, except for the external

forces and moments which appear on the left side of each equation.

One immediate simplifying assumption can be made concerning -ren where, as
defined above,

r =ir +jr +kr
e ex v ez
n n e-n n
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For single engine boosters where the nozzle center line coincides with the longi-

tudinal axis, rey and rez are identically zero. For multi-engine vehicles with the engines

mounted symmetrically about the longitudinal axis,

n n

v  rez
! e-n i n

= 0 (23)

Actually Equation 23 is true only when the engines are not gimbaled. Neglecting the

small bias resulting from gimbaling or engine-out conditions, and assuming that the

engines always lie to the rear of the center of gravity, then

--
r = -: r
e ex
n n

If it is further assumed that all nozzle exits lie in a plane approximately parallel to the

Y-Z plane, then rex is the same for all engines and the subscript n can be dropped.

Under these assumptions, the basic equations reduce to

_ Fx = m(6 + wq - vr)
I

(24)

n

I \ I

Fy = m(% + ur - wp) -_mn r rex (25)

i

n

i'F Z = m({_ + vp - uq) + q r (26)
ex

i

F L " + qr - Iy) + (pr q) Ixy7_ = plX (Iz (Pq + r) IXZ

+ (re _ qe) iyz _ pix + qixy + rixz (27)

M = q Iy + pr(l X - IZ) + (pq - 9)Iyz - (_ + qr)Ixy

n

• .+ (p2 r2)Ixz - q_ + rlyz + PIxy + _nq rex2

:1.

(28)
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I
\

£N = rlz + pq(Iy - IX) + (qr _) Ixz + (pr + q) Iyz

n

+ (pC + q2) IX Y _ ri Z + Plxz + qlyz +£r rex2 (29)

Further simplifying assumptions could be made at this point. For example, it

could be assumed that the X - Z plane is a plane of symmetry so that Iyz = Ixy = 0.

This condition is normally a basic design criteria; however, in some cases, it may be

desirable to determine the effect of certain symmetries• In studies where analytical

or closed-form solutions are a desired result, it is necessary to linearize the equations

(Ref. 18). Such situations are restricted to a solution for a particular type of problem

and are not readily adaptable to a variety of unexpected problems which typically arise

in the preliminary design phase. Where large highspeed electronic computers are

available, the best approach is to hold simplification to a minimum; then if simplications

are desired, certain parameters are simply set equal to zero. In cases where the

simplified equations cannot handle a particular problem, the zeros are easily removed

and no major modifications are necessary. Consequently, no further simplifying

assumptions are made concerning Equations 24 through 29. The purpose of this study

is not to establish any particular stability criteria (Ref. i9), but to establish a flexible

simulation applicable to the variety of problems encountered in preliminary design.

The complete equations of motion assumed in this study are established by formu-

lating the various forces and moments represented by the left-hand side of Equations 24

through 29. For this purpose, it is assumed that

2, 2 -
where

(30)

(31)

FM, M M = miscellaneous forces and moments such as those resulting from thrust

misaligzunent or retro-rockets

F G = gravitational force

FA, M A= aerodynamic forces and moments

m --

FT, M T = forces and moments caused by thrusting action.
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It should be noted that there are no gravitational moments since the origin of the

body axes is at the instantaneous center of gravity of the vehicle• Each of the forces

and moments will now be developed separately according to their source•

B. GRAVITY FORCES

The gravitational vector is referenced to the earth-fixed system and is

directed along the negative Zg axis• The transformation given in Equation 5 can be

used to resolve the vehicle weight into body-axes components as follows:

FG x
= - mg cos (9 cos _

= cos ¢ + sin 8 sin ¢) (32)F G mg (cos 0 sin _;
Y

FG = mg (sin e cos _ - cos 8 sin _? sin ¢)
Z

where g is the magnitude of the acceleration of gravity.

The introduction of _ , _", and ¢ into the equations of motion adds three unknowns

to the six basic unknowns defined earlier in Equations 24 through 29. The situation is

such that these are six equations with nine unknowns. Consequently, auxiliary equations

are needed to determine _, _, and ¢ in terms of the basic unknowns. In Equation 10

it was shown that the time rate of change of the Euler angles can be expressed in terms

of the rotational velocity components p, q, and r. The Euler angles can thus be cal-

culated from the relations

8 =f8 dt+e o 1
_=f_dt+_ °

= f ¢ dt + _o

(33a, b, c)

where eo, _o, and ¢o are initial values and _,

b, c.

, and ¢ are given in Equations 10a,

18



C. AERODYNAMIC FORCES AND MOMENTS

The aerodynamic forces and moments can be formulated in terms of the

normal and axial force coefficients and the so-called stability derivatives. The aero-

dynamic forces and stability derivatives are usually referenced to either body or

experimental axis system, depending on model instrumentation or methods of calculation

(Refs. 9 and 13). In this study, it is assumed that all aerodynamic data are referenced

to the body axis system since the basic equations of motion have been established in

that system. Following the approach of References 7, 12, and i3, it is further assumed

that all stability derivatives for large missiles, with or without non-symmetrical payloads,

are either zero or negligible except

Axial Force

Side Force

Normal Force

Rolling Moment Cf , C , C
Cry 77P

Pitching Moment -C , C
m" m

C_p q

Yawing Moment - C , C
n" n

O_y r

where _p and ay are the pitch angle of attack and yaw angle of attack ( commonly referred

to as the angle of sideslip) as illustrated in Figure 4. These angles will be discussed

later.

The stability derivatives and the experimental and analytical methods for deter-

mining them are discussed thoroughly in the literature; particularly in many reports

published by the National Advisory Committee for Aeronautics (NACA) and later by the

National Aeronautics and Space Administration (NASA). The methods of calculating

the stability derivatives will not be discussed here; however, in any stability investigation

it is desirable to have specific analytical or empirical relations for calculating these when

experimental data are not available.

In more detailed stability and control studies, or when an attempt is made to

establish a general Stability criteria (Ref. t9), it may be necessary to account for more

of the numerous stability derivatives. For this study, those listed above are sufficient.
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FIGURE 4. ILLUSTRATION OF AERODYNAMIC ANGLES
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Standard NASA notation is employed (see List of Symbols) in defining the stability

derivatives. The so-called static derivatives are simply partial derivatives with respect

to a particular variable. For example

_C Z

CZ
_p = _%

where C Z is the normal force coefficient.

The dynamic stability derivatives, in which the variable in the denominator of the

derivative is associated with motion, and nondimensionalized by multiplying the partial

derivative by the parameter 2VR/D where VR is the resultant flow velocity. Thus

Cmq 8 2vR

where C m is the pitching moment coefficient.

The convention is adopted that drag, side, and normal forces are positive along

the negative X, Y, and Z axes. Thus the aerodynamic equations are

FAx = - (CXo + CX O_p) q'S
_p

FAy = - Cy Gy q'S
%

= - C O_p q'S
FA Z Z(_p

= %% % _____c+ c + cMAy _ m_p mq

_c_f VR2P r

(34a)

(34b)

(34c)

q'S D (34d)

(34e)
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MAz= C _ - PD-C + Cn 'S D (34f)
_ n_ k 2VR) Y r

where CP and CG denote the distance from a reference plane passing through the engine

gimbal points to the center of pressure and center of gravity, respectively. Furthermore

S and D are the reference area and diameter, respectively, and the dynamic pressure,

q', is calculated from

1 2

q' = _ Poo VR

where p_ is the free-stream density and V R is the resultant flow velocity.

The aerodynamic forces and moments are seen to be dependent upon the resultant

air-flow velocity. In the absence of wind the velocity of the vehicle relative to the

earth-fixed system, V-'_ and its velocity relative to the flow, VR, are equal in__magnitude.

Since the basic equations of motion are derived in terms of the components of V, it is

necessary to calculate V R to account for the possibility of wind.

Wind data are usually referenced to the earth-fixed coordinate system. The wind

can be broken into components Y_v , Ywg, and Zwg along the Xg, Yg, andvelocity Zgg
axes, respectively• These components can be resolved into the body axes system, using

Equation 5, and combined algebraically with u, v, and w to yield the respective components

of V R as follows:

u = u - X sin _ cos _ + Y sin _ - Z
R wg wg wg

cos e cos

v = v - X (cos e sin _ - sin e cos _ sin _f) + Y
R wg wg

+ Z (cos 0 cos ¢ sin _f+ sin e sin _)
wg

cos ¢ cos

w = w - X (cos a cos _ + sin @ sin _ sin _) - Y sin _ cos
R wg wg

- Z (cos e sin _" sin ¢ - sine cos _)
wg

*(35a, b, c)

In the presentation of wind data it is customary to list vertical gusts, Zwg, and

the resultant wind parallel to the Xg - Yg plane, necessitating the calculation of_[wg

and _£wg" A scheme similar to that presented inReference 12 is convenient for wind
resolution in the Xg - Yg plane• The resultant wind parallel to this plane is denoted
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FIGURE 5. WIND RESOLUTION IN THE Xg - Yg PLANE
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by VW, whichis referenced to true north by the direction angle ew (Fig. 5). The Xg
axis, corresponding to the desired launchazimuth, is referenced to north by the azimuth
angle, _.

From Figure 5 it is obvious that

7W= )_ - e w

where 7w is introduced as a means of referencing V w to the Xg axis. Now it follows
that

Xwg VW cos 7W

g VW sin 7W

(36a, b)

The introduction of winds during launch creates large angles of attack (+90 ° for

vertically launched vehicles) which are beyond the range of linear aerodynamics. Non-

linear aerodynamic characteristics with respect to angle of attack are assumed to

simulate the launch motion under wind conditions. Furthermore, since Mach number

varies considerably during the flight of a vehicle, it is also necessary to consider the

variation of the aerodynamic characteristics with Mach number. Mach number is

determined by the usual relation

V R
M-

V S
(37)

where V S is the speed of sound.

Referring again to Figure 4, the pitch and yaw angles of attack are seen to be

defined by

C_p = tan -I
_R--

_y = tan-1(uV--R_

k_R/

(38a, b)
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The resultant angle of attack is determined from

C_ = tan -1 UR (39)

where u R, v R, and w R are components of the resultant flow vector.

The time derivatives of the pitch and yaw angles of attack are needed in the

calculation of the aerodynamic forces and moments. From Equations 38a, b:

= . _. cos 2 ¢_p
UR2

O_y = - - cos2 O_Y
UR2

(40a)

(40b)

D. THRUST FORCES AND MOMENTS

Before deriving the equations for thrust forces and moments, it is necessary

to adopt a sign convention and define several angles associated with the engine. For a

multi-engine booster, a number system must also be adopted to facilitate references to

a particular engine. For this purpose consider the typical engine arrangement for an

eight-engine booster shown in Figure 6.

In such an arrangement, the outer engines are usually the control engines while

the inner ones are held fixed. No restriction has been placed on the relative locations

of the control and fixed engines. For reference purposes, the control engines were

assigned odd numbers (1, 3, 5, 7, - - - ) and the fixed engines were assigned even

numbers (2, 4, 6, 8, - - -). The only Other restriction is that the complete arrange-

ment will be symmetrical with respect to the center line of the vehicle.

The angles associated with the engines, in both the initial and gimbaled positions,

are defined in the list of symbols. Using engine one in Figure 6 as an example, the

angles are illustrated in Figure 7. Note that the initial position illustrated is typical for

all engines, whereas the gimbaled position is applicable only to the control engines.

the sign convention adopted is such that positive t3yT and t3p T produce force
components in the positive Y and Z directions, respectively.
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The thrust force and moment equations can be derived by using engine one of

Figure 7 as an example, then amplifying to obtain the general equations for a multi-

engine vehicle.

From Figure 7 note that

6y +
T 1 = 6YoI 6Y 1 (41)

_PTI = 6PoI + 6P 1 (42)

where _Y1 and _P1 are the yaw and pitch gimbal angles measured from the original

canted axis of the engine. Note that an initial cant angle is not a restriction, but is

considered as the general case since rocket engines are quite often canted. The main

purpose of this is to direct the thrust of the engine toward the center of gravity at

liftoff, thus reducing moments that could occur in the event of engine failure in a multi-

engine vehicle.

Further relations which are either obvious from Figure 7 or easily derived are

tan = tan cos (43)
6Pol 6°1 _Pol

tan 6Yol = tan _01 sin 6 (44)POI

tan 61 = tan2 6y + tan2 6p (45)

T 1 T 1

tan 601 = n2 _YoI + tan2 6p .. (46)

i i

< 2 "i/2 = _ 01_i/2 (47)

cos 601 = 1 + tan _Ol) + tan2 + tan_6p
6Yoi

1
cos [31 =

(i + tan26y + taneiB _z/2 (48)
T I _T I .
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FIGURE 7. ILLUSTRATION OF ANGLES ASSOCIATED WITH INITIAL AND

GIMBALED POSITIONS OF ENGINE NUMBER ONE
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The angle _Pl is introduced as a means of quickly locating the thrust direction with

respect to the center line of the vehicle. Looking along the X axis in Figure 7b, 6p 1

is the angle between the X-Z plane and the plane containing the thrust vector and the X

axis. From this figure it is seen that

tan _YTl

tan _p
1

tan _P,rl

(49)

and

tan _YoI

tan 6001 -
tan _PoI

(50)

The component thrust forces are easily developed for the engine in its initial

position, being simply

FT = T 1

X 1

FT = T 1

YI

F T -- T1

Z 1

cos _01
(51)

cos 601 tan 6Y01 = TI sin _01 sin _001 (52)

= T I sin _01 cos SP01cos _01 tan _P01
(53)

where T 1 is the thrust of the example engine.

The development of the forces for the engine in a gimbaled position is more

difficult. If the forces are formulated in their exact form, it is difficult to study the

resulting motion independently in pitch and yaw because of the dependency of 6 1 on

6 P1 and _Y1 " For example, the exact form of the FTz 1 in a gimbaled position is
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Tl,tan (_PoI + BPI)

Fr = (54)

ZI

+ tan2(_Yol + _yl_+ tan2 (_Pol + _pl

The dependency of FTz 1 on _ Y1 and _Pl is obvious. As will be seen later in

the development of the control equations, it is desirable to have the engine pitch force

dependent only on the pitch gimbal angle _pl, and known initial values. The same

applies for having the yaw force component dependent only on known initial values and

the yaw gimbal angle, t3y1. The desired relationship for FTz 1 can be obtained by

assuming that its dependency on I3 Y1 is negligible for reasonably small angles. For

this first approximation, Equation 54 becomes

TI tan _PoI + _pl)

FT = i/2 (55)

ZI II + tan2 _YoI + tan2 _PoI + _PI)_

The desired result has been obtained since FTz 1 is now dependent only upon the initial

values and _ Pl " The dependency is of a trigonometric form, however, making it

difficult to see readily the change in FTz I because of a change in _Pl"

Suppose then, as a second approximation, it can be assumed that FTz 1 can be

represented by its value in the engine's undeflected position, given by Equation 55, plus

a linear gradient through _ Y1 = _ Pl = 0. In other words, it is assumed that
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FT _ F T

) ZI ZI

FT = FT +_ +

ZI ZI _YI SYI

_YI = _Pl = 0 _el _PI

and then shown that the last term can be neglected within certain limits so that finally

FTzI

FT = ( FT 1 + _ _PI

Z I \ Zl _ _PI

_YI = _PI = 0

(56)

The gradient of FTz 1 with respect to _P1 is obtained by partial differentiation of

Equation 54 with the result

1

tan2 Pol

FT i - i tan2 (_Pol + tan2Zl + _pz) + _Yol + _Yl)

_p ='

COS2 _Pol + _p _[11 + tane _Pol + _Y + tan2 _Yol + _Y

For reasonably small values of the angles, this gradient can be assumed linear.

initial point of _Y1 = _p = 0 the value ist

I tan2 _Ol I
1- _ + tan2 _yol + tan2 _po_

rI

i/2c°s2 _Pol i + tan 2 _Pol + tan2 _Yo

At the
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Making use of Equations 44 and 47, this is further reduced to

cos 8o I (i- cos 2 _p sin2 $o! c°s2 _p Tl
Ol 01/

(57)

is

PYI' IBYI =Similarly the gradient of FTz I with respect to evaluated at = _PI 0,

__ sin _Pol cos _pFTz sin2 _ol cos _oi

i : Ol

b By c°s2
l _Yol

T (58)
1

For small initial angles, the cross coupling term represented by Equation 58 can be

ignored in comparison with the related term given by Equation 57. As a result, Equation

56 can be applied so that

IF T = in 601 cos _ + - sin2 601 c°s2 _POIZ1 POI cos2 ¢3p01 _3p T1 (59)

This expression of FTz 1 is also dependent only upon initial values and the pitch gimbal

angle, 13pt. In this case, as opposed to Equation 55, the dependency of FTz 1 on ¢3pl

is a simple linear relationship since the initial values are known and the coefficient of

_3Pi is a constant. The relative accuracies of both approximations must be compared

with the exact value given by Equation 54. To make this comparison, typical values for

the initial cant angle must be assumed. Consider the ease ¢3y0 i = _P01 = 3°. Knowing

these two values, the remaining initial values can be computed. Figure 8 shows the

comparison of the approximate and exact values over a wide spread of values for ¢3yt.

As indicated in the figure, _3Pl values of five and ten degrees are assumed whieh

correspond to the lower and upper set of curves, respectively. The difference between

the first and second approximations, representing Equations 55 and 59, is seen to be
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less than one per cent for _P1 = 10°' with the first approximation being closer to the

exact value. Because of this small difference, the second approximation is used to

take advantage of the straightforward expression.

Referring again to Figure 8, it can be seen that for values of _Y1 up to ten

degrees, the error involved in using the second approximation amounts to only three

per cent for _Pl = 10° ' and less than three per cent for _PI = 5°. For values of

_Y1 exceeding ten degrees, the error increases at a moderate rate. A gimbal

angle of ten degrees is conservative for most vehicles and use of the second approx-

imation is justified.

The remaining forces and moments caused by thrust are developed under the same

assumptions. Following the procedure applied previously to the pitch force, the yaw
force is found to be

Is _pO I c°s _01 <i- sin2 _01 sine _POl>_yil T 1 (60)
FTy 1 = in _301 sin + cos2 _3yo1

The exact form for the axial component of thrust is

T 1

FT = TI cos _i = i/2
X I

_ + tan2 _YoI + _YI) + tame _PoI + _PI)I

For this component, the pitch and yaw gimbal angles share equal importance so that the

one cannot be neglected in favor of the other. To avoid this double dependency, both

Y1 and _ PI can be neglected for the angular magnitudes normally encountered. The

axial component thus becomes

FTxI

TI

tan2
+ _YoI

i/2

tan2+ _PoI

which, by use of Equation 45, reduces to
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F = T 1 cos _01 (61)
TX I

Equation 61 is identical with Equation 51 which expressed the value of FTx 1 in the engine

undefleeted position. Ignoring the effect of _3y1 and ¢3pl upon FTx 1 is thus tantamount

to assuming that the change is negligible in the axial component of thrust because of

gimbaling.

The development of the thrust force component for the example engine has been

completed. It should be emphasized that, although a particular engine is used in the

development, the results are applicable to any engine no matter what its location relative

to the vehicel center line may be, so long as the sign convention specified is used. Thus

for the general case Equations 59, 60, and 6t can be written as

FTx = T cos _onn

n

s_i _Pon c°s _°n ( SPo) 1
FTy n _3 sin + 1 - sin 2 _5on sin 2 _3y T

= n

on c°s2 _y n
n on

I _Oon c°s _°n (i sine _ cos2 _Pon) n ]
- _p Tn

FTz = in _3on cos + cos 2 _3y on
n on

where the subscript n refers to a particular engine (n = l, 2, 3, 4, - - - ). Earlier it

was specified that all fixed engines would be identified by even numbers. Therefore for

n, an even number, the gimbal angles _3v and _p are zero and terms involving these
_n n

variables have no meaning. The summation of components for all engines of a multi-

engine vehicle can be written

35



FTx = _ Tn cos _on

i

n

=_ T sin _on sin
FTy n BOon

1

(62)

+

n

c cos Son /

"_ c QI _ sin2 _on
c°s2 By c

1 on
c

in2 )s {3po n
C

T n

c

!By
n

c

(63)

FT Z

rl

\

T sin _on cos
n Pon

n
C COs

c i - sin 2 _on c°se _Pon Tn _P (64)+ cose Bp c c n
! on c c

C

where n again refers to any particular engine, control or fixed, and nc (n c = 1, 3, 5, - - -)

refers to control engines only. Note that the first summation term in both Equations 63

and 64 will be zero if the engine arrangement is symmetrical with respect to the center

line and all engines perform as expected. In case of engine failure or thrust misalignment,

however, biases are created which result in an unbalance of forces and moments. Thrust

misalignments are not considered in the development of the thrust equations but a term is

included in the general equations of motion to account for such misalignments.

Since all the initial values are known in Equations 62 through 64, the equations can

be expressed in a simpler notation by grouping certain constants. For this purpose, let:

KX = cos _on
in

= sin _on sin
KYIn Don

cos

on _ _Ponc_

= C

Ky c°s2 By - sin2 _on sin2
2nc on c

C
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KZ
in

K

Z
en c

= sin _on cos _Pon

c°s $°n _c BOon )cos e _p - sine _Onc c°sS
on c

c

Then Equations 62 through 64 can be written in the simplified form

n

= _ KX Tn
FTx l in

(65)

1"1

n c

£ /
FTy = Ky T +n

1 in 1

Ky Tn By

enc c n c

(66)

n

n c

_--_ Tn _ K Z _pFT Z
= _ K + Tn

i' Zln ' en C c n c

(67)

The components of the moment caused by thrust are developed in a manner similar

to that used above for the force components. In the development of the pitching moment,

for example, it is assumed that

MI = (MI) = 0
_Yi = _Pi

M i

+ _ _P1 _Pi

_,here engine number one is again used for illustration. The gradient term is again

as.sumed linear and evaluated at the initial condition BY1 = _Pi = 0. Furthermore,

cro_,_s-coupling terms are found to be small for the gimbal angle range of interest and

cons_equently are neglected. Thus pitching moments caused by thrust are assumed to

be dependent only on pitch gimbal angles and yaw moments dependent only on yaw gimbal

angleis. It is also assumed that, except for an engine malfunction, the summation of

thrust moments are zero when none of the engines are in a gimbaled position. Under

these as:sumptions, the pitch and yaw components are found to be
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r

12

c
= Tn K_ CGKN + Tn_ nc _nc c

MTz l in

where Rn is the perpendicular distance from the vehicle center line to the gimbal point

of a particular engine, and

K_ = cos _on cos _on

= cos _on tan _Po12

212

KM = Z°s2 _Pon ' c
_c c

cos _on sin 2_on

c c cos e _Oon

4n c 2 cos e _Pon c

c

in

3rIc

= cos _on sin _0o n

= cos _on tan _Yon

cos _Onc _ _+ __sin 2_Onc2

= c_°se _Yon

c

tan _on_
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cos _on sin 2_o n sin2 _Oon
C C C

KN = 2 cos 2 _y
4nc on

C

The production of rolling moments with thrust vector control is also necessary

for asymmetric configurations to counteract induced aerodynamic rolling moments.

In a later development of the control equations, it is assumed that when only pitch forces

and moments are produced by thrust gimbaling, all of the pitch gimbal angles of all

control engines are equal. The same applies to yaw forces and moments produced by

yaw gimbal angles. If this restriction is maintained in the overall control of the vehicle,

it is impossible to produce rolling moments, except in the case of a malfunction, because

of the earlier restriction concerning the symmetry of the engines. Therefore to produce

coordinated rolling moments, certain pairs of engines must gimbal with equal magnitudes

but in opposite directions. This will be taken into account in the control equations. For

practical multi-engine configurations, roll rates should not be severe so that large

rolling moment corrections are not needed. Thus it can be assumed that roll control

can be accomplished by either pitch or yaw gimbaling independently.

Following previous procedures, the general expression for thrust rolling moment

was found to be

n
n c

C1 Tn n n n
MTx ! 5n l c c 4n c n c

n
n c

-C2LTn Rrc KL + Tn Rn KL _P
! in c c enc nC

(70)

where C 1 and C 2 are so-called "go-or-no-go" constants. For pitch gimbal roll control,

C i = 0 and C 2 = I and vice-versa for yaw gimbal roll control. Also

% = cos _on tan Sp sin _Oon
in on
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COS_Onc sin _Oon _ c)
= C

KL cos 2 _p sin2 _Onc c°s2 _Pon
2nc on

C

KL = cos _on tan _y cos _Oon
3n on

cos _on cos _Oon

c (i _Pon )
= c - sin e _on sin e

KL c°s2 _Y c
4nc on c

C

The thrust in all previous equations is assumed to be a function of time to simulate

thrust build-up and decay with altitude. The altitude correction is given by the usual
relation

T =T + -Poo ) An on (Po en

where Ton is the thrust of a particular engine at some reference pressure Po, Aen is

the nozzle exit area, and P=o is the trajectory free stream static pressure. It is

assumed that the thrust of all engines is measured at the same reference pressure,

and that each functions ideally or not at all.

E. MISCELLANEOUS FORCES AND MOMENTS

In the formulation of the general equations of motion, it is virtually impossible

to account for all possible sources of external forces and moments. Forces and moments

caused by thrust misalignments, fin deflections, or retro-rockets, as a few examples,

are not considered in detail. Consequently, as a means of making the equations as general

as possible, a miscellaneous term is added to each equation. Thus,

= TFXM+7 +[

FYM FZM
(71a, b)
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The miscellaneous terms can be either constant or time variant. Actually the term

FXM is needed in the axial force equation to balance the gravitational force at time zero.

At this point, as will be seen later, the axial force equation reduces to

FXM = mg (72)

F. GENERAL EQUATIONS OF MOTION

The general equations of motion are obtained by summing the X, Y, and Z

components of the various forces and moments, and substituting on the left-hand side

of Equations 24 through 30. The general equations are

n

FXM XO + CX_ q'$ - mg cos 8 cos _ + n KX
1 in

= m (6 + wq - vr) (73)

FYM - Cy_y _y q'S + mg (cos e cos _ sin _ + sin e sin _)

n
n c

T I_ _y+ rn Ky + L_, n

i in 1 c £nc n C

= m (v + ur - wp) - _rr (74)
- ex

FZM C Z (_p q'S + mg (cos _ sin 8 sin _ sin _ cos 8)
(%p

n
n c

+ Tn Kz +L), Tn KZ _P

1 in l c enc nc

= m ({_ + vp - uq) + mq r (75)
ex

LM I C_p P_2-_R_ r______]+ C _y + + C2

r

, C n

+_Tn Rn KL By -C2
1 c c 4n n 1

c

T
n

q'SD + C1 Tn Rn KL

5n

ncR KL + R KL _pn , n n
in 1 c c 2n c
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= _I x + qr (I Z - Iy) + (pr - q) Ixy - (pq + r) IXZ + (r e - q2) iy z

MM

pl x + qlxy + rlxz

C Z _p + C_H

_p O_

(76)

+ Cmq _V_I q'SD

n
n c

+ I Tn 2n CG - Rn KMI c 4n c

+ CG KM ITn _p

5n cJ c n c

= q Iy + pr (I X IZ) + (Pq - r) _Z - (_ + qr) Ixy

+ (pC _ r e) ix z qly + rlyz + Pixy + mq r eex
(77)

NM +

n_y
+ Cnr r_2--_R_ - C y y _y _I q'SD

n

+_ T n K N - CG + K N T n By = rl Z

l ' in c 4n c n c

+ pq (Iy - Ix) + (qr - _) IXZ + (q2 + p2) IX Y _ rlxz + Plxz

+ qlyz + mr reex (78)

Table I is included as a convenient reference, listing all inputs to the equations

according to the independent variables of which they are a function.
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TABLE i

PROGRAM INPUTS

Inputs which are a function of time only are

F_, FYM, F_, _, _, N M, m, _, Ix,

IXy' Iyz' IXZ' IXy' _Z' IXZ'

aop, aly, alp, boy, bop' hoy,

Iy, IZ, IX , Iy, IZ

Ton , Aen , CG, r ,ex aoy

hop' ec_ @c _ _c

Inputs which are a function of Mach number only are

CX0

Inputs which are a function of altitude only are

V s , Vw , Zwg

Inputs which are a function of Mach number and pitch angle of attack, or its derivative,

are

C Cm CX C Z , Cm ' ' ' m.

q _p _p (_p (_p

Inputs which are a function of Mach number and yaw angle of attack, or its derivative,

are

C_ , C_ , Cn , C_ , Cy , Cn
q r r O_y ¢_y _y

Inputs which are a function of total angle of attack are

CP

Constant inputs are

c,C,Po,% ,% ,% ,%
1 2 in 2n c 3n 4n c in _2
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TABLE I (CONCLUDED)

,_ ,_ ,% ,_ ,% ,Kx ,% ,
3n c 4n c in 2n 3n c 4n c in in

Ky , KZ , KZ , KR , D, S, g, Rn,

2n c in en c nc

Initial values of the basic variables are

t , v Po' qoo Uo' o' ' ro' Xgo' Ygo' Zgo' _o _ _o _ Wo

e o, By , _p
on on
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SECTION IV. CONTROL EQUATIONS

The six general equations of motion representing the six degrees of freedom of a

rigid body given by Equations 73 through 78 contain li unknown variables, namely the

linear velocities (u, v, w), the rotational velocities (p, q, r), the orientation angles

( 5, _ , ,[7) and the gimbal angles ( _yn c , _pn c ) . The auxiliary relations, given by

Equations 33 a, b, and c, determine the orientation angles. Two additional equations are

needed to match the number of equations with the number of unknowns. These additional

relations are the control equations which can be employed for the determination of the

gimbal angles.

The control equations have a tremendous influence on the eventual motion of the

vehicle. The physical behavior of a vehicle without control varies considerably during

its flight because of variation in the vehicle's mass and its aerodynamic characteristics.

The control system has to be adapted to these variations which are often not accurately

known. Control requirements for a given configuration are dependent on the mode of

operation of the control system. This will be discussed in more detail later.

One of the basic assumptions of this study is that the vehicle is considered a rigid

body. However, deformation of the vehicle under the influence of aerodynamic and

maneuver loads, together with propellant sloshing, creates interactions between the

associated modes of motion which require more complex analysis. Interaction between

motions around the three body axes is usually small since the control system keeps

angular velocities and deviations small. For preliminary design purposes the control

equations can be assumed to contain only linear functions of certain control variables,

with coupling in the control system ignored. Consequently, it was assumed that yawing

motions are controlled by yaw gimbaling and pitching motion of pitch gimbaling. As

mentioned earlier, it is assumed that roll control can be accomplished by either pitch

or yaw gimbaling. In this study, it is further assumed that the vehicle is equipped with

an attitude reference system and an angle-of-attack meter so that the control variables

are the attitude angles and angle of attack. Under these assumptions, the general control

equations are

• °

---+ Ae_y + Al_y + _y = f(_, C_y, _, _, _, _ ---)
n n n

C C C

---+ Be_p + B!_p + _p = f(8, C_p,
n n n

C C C

_ O_ _p_ _ ---)
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Path control, in which displacement variables and their derivatives are included
among the control variables, usually has little or no effect on the gimbal angle require-
ments and canbe neglected in initial studies (Ref. 4).

The control equations are idealized by neglecting derivatives of the gimbal angles
on the left side which produce phase lags but are not important for basic studies (Ref. 2).
Furthermore, all derivatives of the control variables are neglected in this study except
the first derivatives of _and 0. The control equations can now be written in this form

_y = a • _ + aI _;+ + (_-_c) )n OY y bOy _Y hoy

c cJ (79a, b)_p = aop (8-8c) + a (e-ec) + (___
nc ip boy _p + hop

where the coefficients of the control variables are the so-called control gains and the

variables with the subscript c indicate the desired value of that variable when the desired

value is not zero. If the desired value of a variable is assumed to be zero at all times,

no such term is necessary. As an illustration, consider the yaw control equation. If

a solution of the general equations of motion indicates the vehicle is yawing, the yaw

angle _ is amplified by the gain factor aoy and a yaw gimbal angle is created to correct

the yawing motion. In the pitch plane, however, the trajectory is normally tilted so that

the desired value of the pitch angle, ec, is not zero at all times. Thus if a solution of

the equations of motion should indicate that the actual pitch angle _ is not equal to ec,
then a pitch gimbal angle is initiated and the trajectory will be corrected. The desired

value of the roll angle, _ c, is normally zero except in cases where launch equipment

restricts the alignment of the vehicle so that a programmed roll is necessary. All the

control gains and the desired trajectory parameters are time variables.

Using Equations 79 a and b for control, the simulation established in this study

can be used for two specific types of problems. In the first case, completely arbitrary

control gains can be assumed and the resulting dynamics of the vehicle determined. In

the second case, which is the one encountered more often, the control gains are established

according to some preset relation determined by the desired motion of the vehicle during
flight. The establishment of a control program by which an otherwise unstable vehicle

is stabilized is commonly referred to as artificial stabilization. As indicated earlier,

the control modes capturing the most interest at present are the drift-minimum principle

(DMP) and the load-minimum principle (LMP). Both principles are discussed in detail
in References 3 and 6.

The DMP is simply a control program which minimizes the dispersion of the vehicle,

in both the pitch and yaw planes, in response to a wind shear. This is accomplished by

forcil,g the vehicle to assume an attitude which leads to the approximate cancellation of

46



forces perpendicular to the undisturbed flight path. The wind induced oscillations and

accelerations approach zero and a component of thrust against the wind cancels the lift

and side forces. Although a detailed derivation of the DMP is given in References 3

and 6, a short derivation is included here because of differences in sign convention and

basic definitions. In the development of the DMP, it is assumed that the vehicle is not

rolling and that control in the pitch and yaw planes can be analyzed independently. Con-

sidering then the motion in the pitch plane with a wind shear imposed on the vehicle, it

is assumed that the wind is horizontal so that the resultant wind in the pitch plane, for

small values of _r, is :Kwg (Fig. 9).

Referring to Figure 9, let

6_ -@ =Ae /
C

Xg - Xg c = fXXg

(80a, b)

where Pc and :_gc are the desired pitch angle and the desired rate of change of range,

respectively. Also from the figure, for small angles

O_wp + O_p = f_gV - /_'_
(81)

where _Wp is the wind angle, having the approximate value

OC = wg

Wp V

Consequently Equation 81 can be approximated by

AXg - X
= wg _ 4,_

O_p V (82)

The incremental motion in the Xg direction can be approximated by
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_g =
in

n

c

+-- Kzm ___,
1 2n

C

+ --m Tn cos _o q' f_
n o

T _pn
c n

C

(83)

In the derivation of the DMP, it is assumed that rolling motion is small and can be

neglected; hence _y and _p are the same for all engines.

The incremental pitching motion can be approximated by

• °
,- C

_ i C Z q'S (CG-CP) _p - CG K Z Tn _P

IY _p i 2n c c nc

_-- let,

kl P = __i (_Tin n cos _on - CXo q'S_

CZ q'S

_p

k2p = m

n
c

k3p = _m _, Tn KZ

I C 2n c

Cip =

CZ q'S (CG-CP)

(%p

Iy

(84)
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n
c

Tn KZ
c en c

C2y = iy

so that Equations 83 and 84 can be written in the form

oo

LkXg = kip _ - k2p OCp + k3p _p
n
c

• •

L_9 = Cip O_p - C2p _p
n
c

(85)

(86)

From Equation 79 b

_p = aop _ + alp LZe + bop (2p
n
c

where rolling motion is again neglected.

Substituting Equations 82 and 87 into Equation 86 gives

(87)

or

Z_Xg - X
= w_

V (CIp - C2p bop)

L_Xg - Xwg L39 + C2p alp _9 + 2P (aop - bop) + Cip_

V Cip - C2 P bo P

_9

(88)

Substitution of Equations 82, 87, and 88 into Equation 85 gives
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"" i

AXg = C1 P _ C2 P bo P

+ _OP (CIp k3p

(k3pbop - k2p)

- C2p k2p) + kip

°°

f_ + alp (k3p Cip - k2p c

(Cip- C2p bop) ] f_9_

2p) z_

(89)

For DMP it is assumed that

• , ,o

Xg = fN9 = AB _ 0

SO that Equation 89 becomes

Cip - C2p bop
_OP ( CIp k3p - C2p k2p) + kip (Cip - C2p bop_

AB = 0

Since

Cip - C2p bop
_0

then

aop (Cip k3p - C2p k2p) + kip

which can be expressed in the form

Cip Cip

bop - C2---_ C2p k3p- k2p

aop kip

(tip - C2p bop ) = 0

(90)

Equation 90 represents the drift minimum condition and is identical with that derived

in References 3, 4, and 6 except for certain differences in signs. These sign differences

are solely caused by the sign conventions used here and do not detract from the basic

principle involved. Equation 90 can also be derived as shown in Reference 6 by establishing

the characteristic equation of Equations 86, 87, and 88, and examining the roots in detail

as a check on the validity of the assumptions made. Such detail is not necessary here,

since the basic principles are well known.
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The DMP condition, represented by Equation 90, is not sufficient for determining
the magnitude of the gains aop and bop but only indicates the linear relationship between
them. Consequently another relation is neededto determine their values. By virtue of
the DMP condition the translational path dispersion is practically eliminated (Refs. 3 and
6) so that the rotary motion of the vehicle about its center of gravity is predominant.
Equation 89 is a linear differential equation describing the rotary motion in response
to wind disturbances. From this equation, the undampednatural frequency of the rotary
motion is found to be

fnP

so that

Cip + C2p (aop - bop)

i/2

(91)

a
OP - bop =

(2 fnp) 2 - Cip

C2p

(92)

The frequency has a definite influence on the control requirements. Care must be

taken to insure that the frequency is not so low that it corresponds to the bending

frequencies of the vehicle to give resonance effects. The high values of frequency are

bounded by the limitations of the control system hardware. Frequencies currently being

used range from about 0.2 to 0.9 cycles - per - second. As is pointed out in Reference 2

the optimum control frequency for a particular vehicle depends on the characteristics of

the wind disturbances encountered. Once the frequency is established, or assumed,

Equations 90 and 92 can be combined to determine the values of aop and bop. Adding
the two equations gives

(2_ fnp) 2

aop = k2 P k3p

C2p (i + -- ) - -- Cip
kip kip

(93)

Once aop is determined Equation 92 can be used to calculate bop.

The value of alp for the DMP is determined by the damping of the rotary motion

about the center of gravity. The ratio of damping to critical damping is found from
Equation 88" to be

C2p alp

_P = 4_ fnP
(94)
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so that if the frequency and damping are known a 1p is readily determined. A typical

value of ¢ is 0.75.

The lateral control gains for the DMP are established by identical procedures with

those employed above. Thus analagous to Equations 91, 92, 93, and 94, it was found

that

CIy Cl___y

bOy C2y C2y k3y - k2y

aoy kly
(95)

Ciy +f = C2y (aoy bOy) (96)
nY 2_

(2_ fny) e
a = (97)

OY _ k2y _ k3y
C2y + kly_ - kl---_ Ciy

C2y aly
- (98)

_Y 4_ fnY

When the DMP is applied, attitude deviations are small and the resultant angle of

attack does not approach zero when wind disturbances are encountered. As a result,

normal loads are imposed on the vehicle. In some cases these loads may be beyond

the design limit of the vehicle and the DMP cannot be employed. The angle of attack

can be reduced by reducing aoy and aop since this allows greater path instability. The

extreme is reached when aoy and aop are equal to zero (Ref. 3). In this situation, the

vehicle turns its nose in the resultant flow direction like a weathercock stable vehicle

without special attitude control so that attitude deviations of the vehicle may be large.

Since the angle of attack, and thus the aerodynamic loads, approaches zero in this extreme

case, this is commonly referred to as the load-minimum principle (LMP). This approach

may be indicated for large, highly unstable vehicle configurations where tremendous

control torques and structural loads are involved (Ref. 2). If proper guidance equipment

is available, the deviation of the flight path in the presence of wind is of little concern

since it can be compensated for by guidance induced maneuvers during the latter part of

propelled flight when the vehicle is relatively insensitive to aerodynamic effects.
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If aop and aoy are set equal to zero in Equations 92 and 96, it is found that

Cip - (2_ fnp)2 (99)

bop = C2P

Ciy - (2_ f .)e
nY (10o)

boy = C2Y

Note that the load-minimum principle is not a zero load condition but represents

the least amount of load that can be associated with the DMP. For a given vehicle,

however, there is a specific frequency at which the LMP does reduce to a zero-load
condition.

The strong influence of CIp, C2p, Ciy , and C2y on both the DMP and LMP is

obvious. The parameters Cip and C2p are the specific aerodynamic restoring torque

and the specific control torque (pitch plane), respectively, while Ciy and C2y are

identicalparameters for the yaw plane. The fact thatall four parameters are determined

solely by the characteristics of the vehicle and its trajectory is illustrativeof the inter-

play between design and control.

Since itis assumed in the development of the DMP that roll can be neglected, the

roll control gains hoy and hop remain undefined. Also no guarantee has been made

that the DMP or LMP gains satisfy the stabilityconditions of the servomechanisms

employed in the control system (Refs. 20 and 21). This requires a more detailed

analysis. In view of thisuncertainty itis assumed that arbitrary values for the roll

gains can be chosen in any particular investigation, with the actual values being deter-

mined by the limitations of the control system hardware.

The general equations of motion are formulated so that roll can be controlled by

either pitch or yaw gimbaling. In some cases it may not be necessary to use all engines

for roll control. For this reason the control equations are now written in the form

_y = aoy_ + aly_r + boy(2Y + KR hoy (_ - _c) (i01)
n n
c c

_Pn = aOP (@ - @c) + alp (e - ec) + bopO_P + KRn hop (_ - _c) (102)
c c

where the constants KRn c are roll proportionality constants taking on values of zero, or

plus or minus one. If the value is zero then the engine to which it is assigned does not

participate ix the roll control. Once it is established which engines will be used for roll
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control, the engine arrangement must be analyzed to determine which will be assigned
a plus or a minus one value. The plus or minus onevalue simply causes certain engine
pairs to deflect with equal incremental magnitude but in opposite directions so that roll
restoring moments are initiated.

SECTIONV. SOLUTIONOF THE EQUATIONS

Oncethe vehicle data is established and the initial conditions are specified, the
general Equations 73 through 78 canbe solved for {1, "$, "_, _, q, and _. These, in turn,
are integrated to obtain u, v, w, p, q, and r. The earth-fixed acceleration components
can thenbe calculated by applying the transformation given by Equation 7. The body
axis componentsshould include both linear and rotational accelerations. Thus,

()
Zg _d13 d23 d_3[

6 +wq - vr 1

_+ur

w + vp uql
f

(_o3)

The earth-fixed velocity and trajectory geometry components are obtained by

single and double integration of the respective acceleration components. Once this

much ot the basic information has been obtained, the remaining variables, such as angle

of attack, Nach number, gimbal angles, and Euler angles, can be calculated from the

various auxiliary equations.

One point of importance should be made concerning the gimbal angles. The initial

cant angles, _on, and the resultant gimbal angles, _nc, used in the general equations

are referenced to a line parallel to the vehicle center line. The engine gimbal angle

measured from the initial canted axis ( Fig. 7) may be of more physical interest since

this angle is limited by auxiliary engine hardware or vehicle performance. Defining

_nc as the gimbal angle relative to the canted axis, Figure 7 determines that

cos _'n = sin _on sin an cos(__ - _Pon ) + cos _on cos _n (104)c c c Pn c c
C C

SECTION VI. NUMERICAL EXAMPLE

A ficticious vehicle is now formulated as a means of illustrating how the simulation

developed in this study may be used in making a stability and control investigation. A

brief analysis is made to determine the gimbal angle requirements, and related performance
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parameters, for the drift-minimum and load-minimum control modes. Typical results
are shownand compared, where possible, with two-dimensional results for the same
vehicle characteristics. Past experience has shown(Refs. 4 and 5) that the maximum
gimbal angle requirements occur whena vehicle is disturbed by a high velocity wind
shear in the region of maximum dynamic pressure. Consequently the numerical
examplewill be restricted to the maximum dynamic pressure region of the assumed
vehicle trajectory.

A vehicle having eight enginesarranged and numbered as shownin Figure 6 is
assumed, with the four outboard engineshaving gimbal capability. The thrust and

nozzle exit area of all engines are the same, and the gimbal points are in a plane

perpendicular to the vehicle center line. The total sea-level thrust of the vehicle is

1,500,000 pounds corresponding to a liftoff weight of 1,000,000 pounds. An instantaneous

thrust build-up is assumed for simplicity so that Ton is constant with time. A thrust

duration of 120 seconds is also assumed. The initial cant angle f_on, are 4 ° and 6° for

the inboard and outboard engines, respectively. From Figure 6, the following angles

defining the initial thrust direction of each engine are obvious.

_p = 45° _p = 225 °
Ol 05

_p = 90° _0 = 270 °
O_ 06

_0 = 315° _@ = 135°
05 07

6p = 0 _p = 180 °
04 08

The outboard engines lie on a circle about the vehicle center line such that

R I=R 3 =R 5=R_= 8. Sfeet

Similarly,

R 2 = R 4 = R 6 = R 8 = 3. 5 feet

Roll control will be provided by yaw deflections of the control engines so that

(Eq. 72) :

CI=I

C2=0
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From Figure 6 note that a yaw deflection of enginesone and three in the negative
direction would tend to correct a positive roll, while a positive yaw deflection would
be neededfor engines five and seven. Thus, assuming that all of the control engines
share in roll control, the roll proportionality constants are (Eqs. 102and 103):

KR = - 1= KR
l 3

KR =K R = 1
5 7

The mass, center of gravity, inertia, and thrust moment arm characteristics of

the assumed vehicle are shown in Figures l0 and ll. It is assumed that all the mis-

cellaneous forces, such as FYM, are zero. The assumed aerodynamic characteristics
of the ficticious vehicle are shown in Figures 12 through 15. Since the current example

is limited to the region of maximum dynamic pressure, the angles of attack will not be

large and most of the curves shown do not consider the variation of the aerodynamic

parameters with angle of attack. Figure 13 illustrates the more general case, although

the curves shown for large angles of attack are not needed for this example. A double

iteration procedure is employed in the simulation when both the Mach number and angle-

of-attack variation of the aerodynamic parameters are considered (Ref. 9).

The desired (no wind) trajectory parameters in the region of maximum dynamic

pressure are given in Table 2. The desired roll angle, c, is zero for the entire flight.

The desired flight path angle, _ c, and its first time derivative are the only parameters

shown in Table 2 that are required inputs to the control equations.

The desired launch azimuth is due east from Cape Canaveral, Florida so that

k = 90 °

Typical wind profiles and wind shear data for Cape Canaveral are given in Reference

22. A typical wind profile is shown in Figure 16. It is assumed that the vehicle formulated

in the present exam_ _ must be designed to fly through the wind shear represented by this

profile. The assumed wind profile isdesigned so that the maximum wind velocity corre-

sponds to the same altitude at which the vehicle encounters maximum dynamic pressure

( Table 2). The wind shear is assumed to have an 8.5 second build-up; consequently,

the vehicle enters the shear at t = 51.5 seconds, which is assumed to be the starting

time for calculations made in this example. The initial conditions of the desired tra-

jectory are thus
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t = 51.5 sec
0

u = 1190.8 ft/sec Po 0
0

v = 0 qo -0.0091 rad/seco

w = 14.8 ft/sec r = 0
0 0

X = 6920.6 ft _ = 0
go o

Y = 0 @ = 23.76 °
go o

Z = 26191.0 ft _ = 0
go o

The drift-minimum attitude and angle-of-attack control gains can be calculated

from Equations 92, 93, 96, and 97, and are shown in Figures 17 and 18 for several

undamped natural frequencies of the control system. The attitude control gains are

zero for the load-minimum principle. The load minimum angle-of-attack control gains

can be calculated from Equations 99 and 100, and are shown in Figure 19. The attitude

rate control gains are the same for the LMP and the DMP but are a function of the

damping ratio. In this example, it is assumed that the pitch and yaw damping ratios

are equal. The attitude rate control gains calculated from Equations 94 and 98 are

shown in Figures 20a, b, and c for several assumed damping ratios.

Initial calculations are made for both drift-minimum and load-minimum control

under the following assumptions:

fnY = fnP = 0.5 cps

_y = _p = 0.75

0W = 180 o

a

= OY
hoy 2

h aop
OP 2
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The assumptions concerning the roll control gains hoy and hop are completely

arbitrary. A direct side wind ( _W = 180°) is selected to facilitate the comparison of

the current calculations with the results of a typical two-dimensional simulation. The

two-dimensional analysis accounts only for normal and axial aerodynamic forces which
are assumed constant.

The drift-minimum control requirements are examined first. Figure 21 shows the

time history of the gimbal angle and lateral acceleration in response to the assumed

wind disturbance. In this and succeeding figures, time is assumed to be zero at the

instant the vehicle encounters the wind disturbance. In other words, zero time corre-

sponds to the actual flight time of t = 51.5 seconds with maximum dynamic pressure

occurring 8.5 seconds later. The finite gimbal 5ngle shown in Figure 21 for the present

simulation at zero time is the value required to fly the desired trajectory without wind

conditions. Calculations are stopped when the variables approach steady-state conditions

Time histories of the yaw angle and angle of attack, for drift-minimum control are shown

in Figure 22.

Application of the load-minimum principle yields similar results as shown in

Figures 23 and 24. Load-minimum control reduces the gimbal angle and angle of attack

as compared with drift-minimum control. The yaw angle and lateral acceleration are

larger and continue to increase rather than approaching a steady-state condition, thus

indicating path instability.

The results of the present analysis are in general agreement with two-dimensional

results for both control principles. This indicates that the two-dimensional analysis give_,

satisfactory results when the disturbed motion of the vehicle takes place primarily in
one plane as it does in the case of a direct side wind.

The time histories of the gimbal angle calculated from the present simulation are

not associated with any particular one of the four control engines of the assumed vehicles;

rather the maximum value at each instant of time is used. However, since the gimbal

angle relative to the initial canted axis is shown, the value is the same for all four engine_

except for small differences necessary for roll control.

The roll angle of the assumed vehicle is negligible with both load-minimum and

drift-minimum control for the case of a direct side wind. The dispersions of the flight

path angle and longitudinal acceleration are shown in Figure 25. For the case of a side-

wind the two-dimensional analysis neglects motion in the pitch plane; hence no comparison

can be made for the pitch plane variables.

All of the results shown thus far are for a frequency of 0.5 cycles per second. The

effect of frequency on the maximum values of lateral acceleration, yaw angle, gimbal

angle, and angle of attack are shown in Figure 26 for drift-minimum control. Similar

results are shown in Figure 27 for load minimum control. Values for yaw angle and
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lateral acceleration are not shown for load-minimum control since they increase con-

tinuously and consequently have no maximum value (Figs. 23 and 24). The two-

dimensional results here are generally conservative as compared with the results of the

present analysis. A notable exception is the yaw angle with drift-minimum control,

the two-dimensional analysis predicting 20 per cent lower vaIues( Fig. 23).

The effect of wind direction on the lateral-acceleration is shown in Figure 28 for

both control principles. Similar variations for gimbal angle and angle of attack are

shown in Figure 29. The case of a failure of engine number one (T 1 = 0) is also
considered in Figure 29. All of the curves shown in Figures 28 and 29 have mirror

images for the other 180-degree range of wind direction except for the curves con-
sidering engine failure.

It is apparent from Figures 28 and 29 that the maximum points on the curves are

not coincident with a direct side wind ( _W = 180°) as is sometimes assumed. For the

present example, however, the maximum values are not significantly different from
those corresponding to a side wind.

A significant roll angle results in the case of engine failure, for some wind

directions. The range of the roll angle for 0w between 90 degrees and 270 degrees for
the assumed vehicle is as follows:

1.20° <_ ¢ <_- 2.76 °

It is beyond the scope of this example to consider all of the possible variations

and combinations of the parameters involved. A complete stability and control inves-

tigation of any vehicle requires a tremendous volume of charts and calculations. While

the results shown are brief, they illustrate the application and flexibility of the simulation

developed in this report. The simulation should be restricted primarily to first stage

flight because of the assumptions of a non-rotating, flat earth and a constant acceleration
of gravity.
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